Missing Data and Imputation

NINA ORWITZ

OCTOBER 30TH, 2017

Outline

- Types of missing data
- Simple methods for dealing with missing data
- Single and multiple imputation
- R example

Missing data is a complex problem

We must consider:

- The type of missingness present in our data

 How different methods yield biased and/or inefficient estimates

- No method perfectly "fixes" the problem of missing data

All models are wrong but some are useful

George E.P. Box

Missing Completely at Random (MCAR)

If Missing= missing indicator (1=missing, 0= not missing): Pr (Missing | Xmiss, Xobs) = Pr (Missing)

- Being missing is independent of both observed and unobserved data
- Pr (missingness) is the same for all units
- R package: Little's MCAR test
- Example: participant flips coin to decide whether to answer survey question

Missing at Random (MAR)

If Missing= missing indicator (1=missing, 0= not missing): Pr (Missing | Xmiss, Xobs) = Pr (Missing | Xobs)

- Pr (missingness) depends only on available information

- Example: In a survey, poor subjects were less likely to answer a survey question on drug use than wealthier subjects. The missingness of drug use is related to observed predictors (income) but not drug use itself.

- Problem with assuming MAR?

Missing Not at Random (MNAR)

If Missing= missing indicator (1=missing, 0= not missing): Pr (Missing | Xmiss, Xobs) = Pr (Missing | Xmiss, Xobs)

-Pr (missingness) depends on unobserved information, biases the model

- Example 1: Suppose answering the question (from last slide) also depends on drug use itself; those who used drugs are less likely to report it.

- Example 2: Those who are high earners are less likely to report their incomes.

Taking Action On Missingness

- Not always necessary!

 If we have ~5% missingness in a variable, estimates will not change much, probably will not be biased

- If we have ~30% missingness in a variable, estimates will change a lot → reason to consider imputation methods

Complete-Case Analysis

- "Listwise Deletion"		Variables			
Evolude all data for a case that has 1 or more missing values		Α	В	С	D
- Exclude all data for a case that has I of more missing values	1	1	2	3	4
- Done automatically in R for linear regression, other regressions	2	1	2	3	4
- Assumes MCAR, biased estimates, ignoring information	3	4	3	2	1
	4	4	3	2	1
 Inverse Probability Weighting- used to correct for bias from this → Complete cases are weighted as the inverse of their probability of being a complete case; corrects for unequal sampling fractions 	5	1	2		1
	6		2	2	1
	7	1	2	2	
	8	1		2	1

Available-Case Analysis

- "Pairwise Deletion"

- Can use 'regtools' package in R

 Involves computation of pairs of variables, can include in the calculation any observations for which the pair is intact
 Ex: predicting weight from height, age: can estimate covariance
 between height and weight using all records when height and weight are intact, even if age is missing

- Assumes MCAR, standard errors over or under estimated

Types of Imputation

A. Single Imputation

- Can take on many forms: impute the missing values based on values of other variable(s)

B. Multiple Imputation

- Introduced by Rubin in 1987
- Impute the missing values **multiple** times based on values of other variables

Single Imputation Methods

Mean Imputation

- Impute with the mean of the observed values of that variable. Underestimates SEs, pulls estimates of correlation toward 0

Random Imputation

- replace NA's with random sample of nonmissing values from that variable

LOCF (Last Observation Carried Forward) - in studies where we have "pre-treatment" and "post-treatment" measures. Conservative?

Figure 1: Differential last observation carried forward (LOCF) bias when there are more or earlier dropouts in the *treatment group* than in the control group. (Effect measured by LOCF [c-d] > true effect [a-b], resulting in an exaggerated positive effect, biased in favour of treatment.)

Single Imputation Methods (II)

Indicator Variables for Missingness in Categorical Predictors - add an extra category that indicates missingness (if unordered categories)

Regression Imputation

- use models of the non-missing data to predict values of the missing data, may inflate correlation, produced biased estimates/SEs

Imputation in Genomics

- Inference of unobserved genotypes done by using known haplotypes in the population

- Bayesian PCA, KNN Impute, SVD Impute useful for -omics data

- Some useful software packages: MaCH, Minimac, IMPUTE2, Beagle

Multiple Imputation Overview

Multiple Imputation Background

- Iteratively draw imputed values from the conditional distribution for each variable given the observed and imputed values of the other variables in the dataset

-Markov Chain Monte Carlo Method (MCMC) assuming multivariate normality is used by default in 'mi' package in R

→Markov Chain: sequence of R.V.s, each element's distribution depends on value of previous element, has transitional probability, converges to stationary distribution

→Monte Carlo: sampling techniques that draw pseudo-random numbers from probability distributions

- Some useful R packages: MI, MICE

MCMC Method Step-By-Step

1) Replace all missing data values (X_{un}) with starting values

2) Estimate parameters θ from f($\theta \mid X_{obs}, X_{un}$) now that we have X_{un} from (1).

3) The next sample of X_{un} can be drawn from Bayesian predictive distribution $f(X_{un} | X_{obs}, \theta^t)$ where θ^t is current estimated parameter values - known as Imputation-Step (I-Step)

4) Simulate next iteration of θ from the complete data posterior distributionknown as Prediction Step (P-Step)

5) Repeat Steps 3) and 4) iteratively until θ converges.

*We can choose how many iterations we want to run in R.

Last Steps of Multiple Imputation

- For each variable in the order specified, a univariate (single dependent variable) model is fit against all the predictors, and for each variable the MCMC method continues for the maximum number of iterations which allows distribution to stabilize

- Check convergence of the procedure
 - Can increase maximum number of iterations if does not converge
- Combine inferences across datasets using Rubin's Rule

Combining Results for Inference

- After imputing M datasets, final Beta estimate is mean of all of the Beta estimates from each dataset=

$$\widehat{\boldsymbol{\beta}} = \frac{1}{M} \sum_{j=1}^{M} \widehat{\boldsymbol{\beta}}^{(j)}$$

- Total variance= variance within imputations (A) + variance between imputations (B)

$$V_{\beta} = \frac{1}{M} \sum_{j=1}^{M} \widehat{\sigma}^{2(j)} + \left(1 + \frac{1}{M}\right) \left(\frac{1}{M-1} \sum_{j=1}^{M} (\widehat{\beta}^{(j)} - \widehat{\beta})^{2}\right) = \mathbf{A} + (\mathbf{1} + \frac{1}{M})\mathbf{B}$$

where
$$A = \frac{1}{M} \sum_{j=1}^{M} \widehat{\sigma}^{2(j)}$$
 and $B = (\frac{1}{M-1} \sum_{j=1}^{M} (\widehat{\beta}^{(j)} - \widehat{\beta})^2)$

R Example

NlsyV data- Subset of data on children and their families in the U.S.

Outcome of interest: pprvt.36- Peabody Picture Vocabulary test score administered at 36 months

Predictors:

first- indicator of child being first-born or not; b.marr- indicator of mother being married when child was born; income- family income in year after child was born; momage- age of mother when child was born; momed- educational status of mother when child was born; momrace- race of mother

Drawbacks of Multiple Imputation

1. Not a perfect method- making guesses about potentially many values

2. Operates under the **big** assumption that all missing data is MAR

3. How many variables to include?

- Too few variables increases risk of separation \rightarrow when outcome is perfectly predicted by a predictor/linear combination of predictors

4. How many chains to run? Literature varies, but probably at least 5- Can calculate based on largest proportion of missingness in a variable

Final Thoughts

- There are many ways to go about imputation beyond those discussed today; increase in -omics data demands new missing data methods

- Important to remember that no imputation method is perfect

References

Chibnik, L. (2016). Biostatistics Workshop: Missing Data. Available from: https://www.slideshare.net/HopkinsCFAR/biostatistics-workshop-missing-data

Gelman, A., & Hill, J. (2006). Missing-data imputation In Data Analysis Using Regression and Multilevel/Hierarchical Models. (Analytical Methods for Social Research, pp. 529-544). Cambridge: Cambridge University Press. doi:10.1017/CBO9780511790942.031

Goodrich B. & Kropko, J. (2014). An Example of mi Usage. https://cran.rproject.org/web/packages/mi/vignettes/mi_vignette.pdf

Schunk, D. (2008). A Markov chain Monte Carlo algorithm for multiple imputation from large surveys. *A Stat. Assoc, 92,* 101-114.

Su, Y-S., Gelman A., Hill, J., & Yajima, M. (2011). Multiple Imputation with Diagnostics (mi) in R: Opening Windows into the Black Box. *J of Stat Software*, *45*(2), 1-31.